Введение

Материал из WikiTraining
(Различия между версиями)
Перейти к: навигация, поиск
 
(не показаны 48 промежуточных версий 9 участников)
Строка 1: Строка 1:
      Как мы все знаем, естествознание состоит из многих наук. Каждая из естественнонаучных дисциплин - физика, химия, геология, биология и другие - изучает определенный вид бытия. Подобно видам бытия, науки находятся между собой в некоторых соотношениях.
+
== Введение ==
  
      В начале XX века был сделан целый ряд открытий, в корне изменивших видение мира современным естествознанием. Теория относительности [[Эйнштейн|А. Эйнштейна]], опыты [[Резерфорд|Резерфорда]] с альфа-частицами, работы Нильса Бора, исследования в химии, биологии, психологии и других науках показали, что мир гораздо разнообразнее, сложнее, чем это представлялось механистической науке, и что сознание человека изначально включено в само наше восприятие действительности.
+
'''Запутанность квантовых состояний''' представляет собой центральное понятие, которое необходимо для того, чтобы разобраться в таких вопросах, как информационная открытость квантовых систем, коллапсы волновых функций, проблема декогеренции, квантовые компьютеры. Так называемые чистые состояния в квантовой механике описываются волновыми функциями. Множество волновых функций образует некоторое гильбертово пространство, называемое пространством состояний.
 +
При рассмотрении простых изолированных систем, например, частицы в потенциальном силовом поле, достаточно ограничиться лишь чистыми состояниями.
 +
Однако, ситуация меняется при обращении к квантовым открытым системам. Состояния такой системы, как правило, оказывается смешанным и не может быть описано волновой функцией. Для описания смешанных состояний  фон Нейманом было введено понятие матрицы плотности.
 +
Любая подсистема составной системы является открытой и, наоборот, любую открытую систему можно трактовать как подсистему большой изолированной системы. Например, в процессе квантового измерения прибор и изучаемая квантовая система образуют комбинированную систему. В результате измерения, то есть взаимодействия между прибором и подсистемой, состояние системы оказывается смешанным.
 +
Используя модель комбинированной системы: «подсистема» плюс «окружение», механизм превращения чистого состояния подсистемы можно разделить на два этапа:
 +
На первом этапе в результате взаимодействия происходит запутывание состояний подсистемы и окружения. В результате образуется «запутанное» состояние, не являющееся произведением чистых состояний.
 +
Второй этап — выделение состояния подсистемы из запутанного состояния. Это достигается усреднением соответствующей матрицы плотности комбинированной системы по состояниям окружения. Возникающая в результате матрица плотности подсистемы описывает статистическую смесь базисных состояний, то есть смешанное состояние.
 +
Цель данной работы – познакомиться с чистыми и смешанными состояниями простых и составных квантовых систем на примере системы кубитов,  рассмотреть преобразование таких состояний и их эволюцию, а также проблему квантовой декогеренции, примеры использования различных состояний кубитов в квантовых компьютерах.
  
      Нобелевский лауреат Илья Пригожин положил начало новому принципу осмысления действительности. В свете этого принципа, признающего за Вселенной первичную динамическую неопределенность, оказалось возможным выработать новое понимание эволюции. Одна и та же энергия, одни и те же принципы обеспечивают эволюцию на всех уровнях: от физико-химических процессов до человеческого сознания и социально-культурной информации. Вселенная оказывается единой во всех своих пластах, живой, развивающейся, восходящей на новые ступени бытия.
 
  
      Природа - растительный и животный мир - постоянно поражает нас разнообразием своих форм и изяществом их структур: начиная с тех, которые мы встречаем в природе, и заканчивая теми, что присущи разумной жизни; мы настолько привыкли к ним, что зачастую уже не осознаем, каким чудом является само их существование. А как зарождаются эти структуры, ведь их самозарождение противоречит всем физическим принципам. Однако синергетика, как новая парадигма, переворачивает наше сознание того, что и в мире неживой природы новые упорядоченные структуры могут возникать из неупорядоченного хаоса и сохраняться неизменными при наличии постоянного притока энергии.
 
  
      В каждом процессе становления структуры принимает участие великое множество отдельных элементов, которые неизбежно вступают во взаимодействие друг с другом, образовывая комплексные системы. Эти системы подчинены правилам - правилам поведения отдельных составляющих элементов - неким шаблонам поведения. А для синергетики интерес представляют не отдельные эти правила, а общие законы, по которым формируются структуры, состоящие из сложных процессов.
 
  
      Термин "синергетика" ввел немецкий ученый Герман Хакен, впервые озвучен термин докладом "Кооперативные явления в сильно неравновесных и нефизических системах" в 1973 году. В переводе он буквально означает "теория совместного действия" или как многие называют "наука о самоорганизации". Под самоорганизацией при этом понимается спонтанный переход открытой неравновесной системы от менее к более сложным и упорядоченным формам организации.
+
== Используемые источники ==
 +
<references />
  
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Синергетика это новый этап изучения сложных систем, продолжающий и дополняющий кибернетику и общую теория систем.
+
<br />
 
+
<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Если кибернетика занимается проблемой поддержания устойчивости путем использования отрицательной обратной связи, а общая теория систем - принципами их организации (дискретностью, иерархичностью и т.п.), то новая наука фокусирует свое внимание на неравновесности, нестабильности как естественном состоянии открытых нелинейных систем, на множественности и неоднозначности путей их эволюции. Синергетика исследует типы поведения таких систем, то есть нестационарные структуры, которые возникают в них под действием внешних воздействий или из-за внутренних факторов (флуктуаций).
+
[[Категория: Проект]]
 
+
[[Категория: Справка]]
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[Синергетика|Синергетика]] в значительной мере опирается на идеи, методы и принципы нелинейной термодинамики неравновесных процессов, на достижения, полученные при решении задач нелинейной теории колебаний в радиотехнических системах.
+
 
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;А качественная теория дифференциальных уравнений, начало которой было положено в трудах Анри Пуанкаре, и выросшая из нее современная общая теория динамических систем вооружила синергетику значительной частью математического аппарата. Математический аппарат синергетики скомбинирован из разных отраслей теоретической физики: нелинейной неравновесной термодинамики, теории катастроф, теории групп, тензорного анализа, дифференциальной топологии, неравновесной статистической физики.
+
В данной работе я постараюсь раскрыть и осмыслить само существо и понятие синергетики - нового направления современной научной мысли, а также определить некоторые теории, понятие, системы и объекты синергетики.
+
 
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;По замыслу своего создателя профессора Германа Хакена, синергетика призвана играть роль своего рода метанауки, подмечающей и изучающей общий характер тех закономерностей и зависимостей, которые частные науки считали "своими". Поэтому синергетика возникает не на стыке наук в более или менее широкой или узкой пограничной области, а извлекает представляющие для нее интерес системы из самой сердцевины предметной области частных наук и исследует эти системы, не апеллируя к их природе, своими специфическими средствами, носящими общий ("интернациональный") характер по отношению ко взятым за основу наукам. Физик, биолог, математик, экономист, психолог и т.д. видят свой материал, и каждый из них, применяя методы своей науки, обогащает общий запас идей и методов синергетики.
+
:[[Синергетика|Статья Синергетика]]
+
[[Категория:физика]]
+

Текущая версия на 12:08, 15 февраля 2013

Введение

Запутанность квантовых состояний представляет собой центральное понятие, которое необходимо для того, чтобы разобраться в таких вопросах, как информационная открытость квантовых систем, коллапсы волновых функций, проблема декогеренции, квантовые компьютеры. Так называемые чистые состояния в квантовой механике описываются волновыми функциями. Множество волновых функций образует некоторое гильбертово пространство, называемое пространством состояний. При рассмотрении простых изолированных систем, например, частицы в потенциальном силовом поле, достаточно ограничиться лишь чистыми состояниями. Однако, ситуация меняется при обращении к квантовым открытым системам. Состояния такой системы, как правило, оказывается смешанным и не может быть описано волновой функцией. Для описания смешанных состояний фон Нейманом было введено понятие матрицы плотности. Любая подсистема составной системы является открытой и, наоборот, любую открытую систему можно трактовать как подсистему большой изолированной системы. Например, в процессе квантового измерения прибор и изучаемая квантовая система образуют комбинированную систему. В результате измерения, то есть взаимодействия между прибором и подсистемой, состояние системы оказывается смешанным. Используя модель комбинированной системы: «подсистема» плюс «окружение», механизм превращения чистого состояния подсистемы можно разделить на два этапа: На первом этапе в результате взаимодействия происходит запутывание состояний подсистемы и окружения. В результате образуется «запутанное» состояние, не являющееся произведением чистых состояний. Второй этап — выделение состояния подсистемы из запутанного состояния. Это достигается усреднением соответствующей матрицы плотности комбинированной системы по состояниям окружения. Возникающая в результате матрица плотности подсистемы описывает статистическую смесь базисных состояний, то есть смешанное состояние. Цель данной работы – познакомиться с чистыми и смешанными состояниями простых и составных квантовых систем на примере системы кубитов, рассмотреть преобразование таких состояний и их эволюцию, а также проблему квантовой декогеренции, примеры использования различных состояний кубитов в квантовых компьютерах.



Используемые источники




Личные инструменты
Пространства имён
Варианты
Действия
Навигация
Группы
Ссылки
Инструменты