Набатова Анна

Материал из WikiTraining
(Различия между версиями)
Перейти к: навигация, поиск
Строка 1: Строка 1:
<p style="font-size:200%; font-weight:bold;">Применение искусственных нейронных сетей<br />в задачах солнечно-земной физики</p>
+
<p style="font-size:200%; font-weight:bold;">ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ СВОЙСТВ ПОЛУПРОВОДНИКОВ<br />в задачах солнечно-земной физики</p>
  
 
== Аннотация ==
 
== Аннотация ==
Современные математические технологии предлагают разнообразные подходы и методы решения широкого спектра задач во многих областях науки. Развитие вычислительной техники открывает исследователям новые возможности в постановке экспериментов, обработке массивов данных, интерпретации полученных результатов. Производительность компьютеров позволяет выполнять расчет физических моделей изучаемых процессов при учете десятков и сотен воздействующих факторов за считанные минуты. В такой ситуации может сложиться впечатление, что аналитическое усложнение исследуемой модели или условий при постановке задачи всегда приводит к более надежному и точному результату. Однако, как показывает практика, это не так.
+
Вещество, внесенное в электрическое поле, может существенно изменить его. Это связано с тем, что вещество состоит из заряженных частиц. В отсутствие внешнего поля частицы распределяются внутри вещества так, что создаваемое ими электрическое поле в среднем по объемам, включающим большое число атомов или молекул, равно нулю. При наличии внешнего поля происходит перераспределение заряженных частиц, и в веществе возникает собственное электрическое поле.  
 
+
В последнее время физические связи между экспериментальными данными об анализируемых событиях начали устанавливаться без построения моделей. В основе такого подхода лежит метод искусственных нейронных сетей (ИНС), который сочетает корреляционную обработку изучаемых сигналов с их нелинейным преобразованием. Этот вычислительный метод содержит в себе математический алгоритм и применяется в основном в двух вариантах. В первом – выясняются зависимости между группами последовательных данных, находящихся в причинно-следственной связи. Во втором – события объединяются в группы (классифицируются) по схожим признакам и таким образом выделяются характерные особенности изучаемых явлений. Продолжительный опыт использования ИНС в разных приложениях показал, что этот метод особенно эффективен для сложных систем, когда их физическая модель излишне сложна или отсутствует на данный момент.
+
 
+
Преимущество нейросетевых технологий перед другими методами объясняется изначально определяемой простотой при моделировании процесса. Созданная нейросетевая система для конкретной задачи символизирует вершину эволюции математического моделирования динамических процессов. Высокий интерес к нейронным сетям, проявляемый специалистами из разных областей деятельности, объясняется, прежде всего, очень широким диапазоном решаемых с их помощью задач. Нейронные сети могут быть использованы при решении задач по прогнозированию и восстановлению числовых рядов, а также при классификации образов. Примерами приложений являются обработка изображений и нелинейное управление, распознавание образов и адаптивная фильтрация, идентификация и финансовое прогнозирование. В настоящее время метод ИНС активно применяется также и в геофизике для решения задач прогноза параметров солнечно-земных связей и различных геофизических явлений.
+
  
  
 
== Содержание работы ==
 
== Содержание работы ==
:'''Полупроводники'''<br />
+
::1. [[Пример содержательной страницы|Полупроводники]]<br />
 +
::2. [[Пример содержательной страницы|Опыт]]<br />
  
:'''Опыт'''<br />
+
:[[Пример списка источников|Список источников]]
:[[Пример списка источников|Полный список источников]]
+
  
  
 
== Автор работы ==
 
== Автор работы ==
Студент группы №251 [[Набатова Анна Геннадьевна]]
+
Студент группы №251   [[Набатова Анна Геннадьевна]]
  
 
[[Категория: Проект]]
 
[[Категория: Проект]]
 
[[Категория: Справка]]
 
[[Категория: Справка]]
  
'''ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ СВОЙСТВ ПОЛУПРОВОДНИКОВ
 
'''
 
  
  
Полупроводники
+
1. Полупроводники
  
 
Вещество, внесенное в электрическое поле, может существенно изменить его. Это связано с тем, что вещество состоит из заряженных частиц. В отсутствие внешнего поля частицы распределяются внутри вещества так, что создаваемое ими электрическое поле в среднем по объемам, включающим большое число атомов или молекул, равно нулю. При наличии внешнего поля происходит перераспределение заряженных частиц, и в веществе возникает собственное электрическое поле. Полное электрическое поле  складывается в соответствии с принципом суперпозиции из внешнего поля  и внутреннего поля  создаваемого заряженными частицами вещества.
 
Вещество, внесенное в электрическое поле, может существенно изменить его. Это связано с тем, что вещество состоит из заряженных частиц. В отсутствие внешнего поля частицы распределяются внутри вещества так, что создаваемое ими электрическое поле в среднем по объемам, включающим большое число атомов или молекул, равно нулю. При наличии внешнего поля происходит перераспределение заряженных частиц, и в веществе возникает собственное электрическое поле. Полное электрическое поле  складывается в соответствии с принципом суперпозиции из внешнего поля  и внутреннего поля  создаваемого заряженными частицами вещества.
Строка 45: Строка 39:
  
 
Так как поверхность проводника является эквипотенциальной, силовые линии у поверхности должны быть перпендикулярны к ней.
 
Так как поверхность проводника является эквипотенциальной, силовые линии у поверхности должны быть перпендикулярны к ней.
 +
2. Опыт
  
 
Этот опыт можно показать на уроке физики в 10 классе, на тему «Проводники в электрическом поле».
 
Этот опыт можно показать на уроке физики в 10 классе, на тему «Проводники в электрическом поле».

Версия 12:13, 29 октября 2012

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ СВОЙСТВ ПОЛУПРОВОДНИКОВ
в задачах солнечно-земной физики

Аннотация

Вещество, внесенное в электрическое поле, может существенно изменить его. Это связано с тем, что вещество состоит из заряженных частиц. В отсутствие внешнего поля частицы распределяются внутри вещества так, что создаваемое ими электрическое поле в среднем по объемам, включающим большое число атомов или молекул, равно нулю. При наличии внешнего поля происходит перераспределение заряженных частиц, и в веществе возникает собственное электрическое поле.


Содержание работы

1. Полупроводники
2. Опыт
Список источников


Автор работы

Студент группы №251 Набатова Анна Геннадьевна


1. Полупроводники

Вещество, внесенное в электрическое поле, может существенно изменить его. Это связано с тем, что вещество состоит из заряженных частиц. В отсутствие внешнего поля частицы распределяются внутри вещества так, что создаваемое ими электрическое поле в среднем по объемам, включающим большое число атомов или молекул, равно нулю. При наличии внешнего поля происходит перераспределение заряженных частиц, и в веществе возникает собственное электрическое поле. Полное электрическое поле складывается в соответствии с принципом суперпозиции из внешнего поля и внутреннего поля создаваемого заряженными частицами вещества. Вещество многообразно по своим электрическим свойствам. Наиболее широкие классы вещества составляют полупроводники и диэлектрики. Полупроводники – это вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов и диэлектриков, обусловлена переносом электронов и возрастает при повышении температуры. Основная особенность полупроводников – наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника. Типичные проводники – металлы. В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды (рис. 1). Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды –индукционными зарядами. Индукционные заряды создают свое собственное поле которое компенсирует внешнее поле во всем объеме проводника: (внутри проводника). Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.


Файл:Рис1.JPG


Все внутренние области проводника, внесенного в электрическое поле, остаются электронейтральными. Если удалить некоторый объем, выделенный внутри проводника, и образовать пустую полость, то электрическое поле внутри полости будет равно нулю. На этом основана электростатическая защита– чувствительные к электрическому полю приборы для исключения влияния поля помещают в металлические ящики.

Файл:Рис2.JPG

Так как поверхность проводника является эквипотенциальной, силовые линии у поверхности должны быть перпендикулярны к ней. 2. Опыт

Этот опыт можно показать на уроке физики в 10 классе, на тему «Проводники в электрическом поле».

В том, что в проводниках помещенных в электрическое поле происходит разделение зарядов можно убедиться на опыте с двумя электрометрами, соединенных проводником на моделирующей ручке.

При приближении эбонитовой палочки, заряженной отрицательно, стрелки обоих электрометров отклоняются. Можно предположить, что на ближайшем электрометре, к палочке наводится заряд, т.к. электроны под действием поля отрицательны, палочки уходят.

Файл:Рис3.JPG

При разъединении этих электрометров заряды не могут вернуть электроны с правого на левый электрометр, и электрометры остались заряженными.

Файл:Рис4.JPG

По нашей гипотезе, левый заряжен положительно, а левый отрицательно. Проверка знака заряда, подтверждает это при приближении отрицательно заряженной палочки, угол отклонения электрометра уменьшается, если подносить отрицательно заряженную палочку ко второму электрометру, то угол увеличится. Это говорит о том, что действительно второй электрометр заряжен отрицательно.


Файл:Рис 5.JPG

Знаки зарядов противоположны, но модулю равны. Если соединить проводником электрометры, происходит их полная нейтрализация, что возможно при зарядах равных по модулю, но противоположных по знаку.

Файл:Рис 6.JPG

Личные инструменты
Пространства имён
Варианты
Действия
Навигация
Группы
Ссылки
Инструменты