Физика твёрдого тела

Материал из WikiTraining
(Различия между версиями)
Перейти к: навигация, поиск
(Примечания)
 
(не показаны 15 промежуточных версий 1 участника)
Строка 4: Строка 4:
  
 
== История ==
 
== История ==
[[Файл:Rough_diamond.jpg|thumb|right|150px|Внешний вид [[Алмаз|алмаза]]]]
 
[[Файл:Diamond animation.gif|thumb|right|150px|и схематическое изображение его кристаллической решетки]]
 
[[Кристалл|Кристаллы]] многих минералов и драгоценных камней были известны и описаны ещё несколько тысячелетий назад. Одна из наиболее ранних зарисовок кристаллов содержится в китайской [[Фармакопея|фармакопее]] одиннадцатого века нашей эры. Кристаллы кварца из императорской короны, сохранившиеся с 768 года нашей эры, находятся в [[Сёсоин|Сёсоине]], сокровищнице японских императоров в [[Нара (город)|Нара]]. Кристаллом называли вначале только лёд, а затем и [[кварц]], считавшийся окаменевшим льдом. В конце эпохи средневековья слово «кристалл» стало употребляться в более общем смысле.
 
  
Геометрически правильная внешняя форма кристаллов, образующихся в природных или лабораторных условиях, натолкнула ученых еще в семнадцатом веке на мысль, что кристаллы образуются посредством регулярного повторения в пространстве одного и того же структурного элемента. При росте кристалла в идеальных условиях форма его в течение всего роста остается неизменной, как если бы к растущему кристаллу непрерывно присоединялись бы элементарные кирпичики. Сейчас известно, что такими элементарными кирпичиками являются [[атом|атомы]] или группы атомов. Кристаллы состоят из атомных рядов, периодически повторяющихся в пространстве и образующих кристаллическую решетку. В восемнадцатом веке минералогами было сделано важное открытие. Оказалось, что индексы, определяющие положение в пространстве любой грани кристалла, суть целые числа. [[Гаюи, Рене Жюст|Гаюи]] показал, что это можно объяснить расположением идентичных частичек в ряды, периодически повторяющиеся в пространстве. В 1824 г. Зибер из Фрайбурга предположил, что элементарные составляющие кристаллов («кирпичики», атомы)являются маленькими сферами. Он предложил эмпирический закон межатомной силы с учетом как сил притяжения, так сил отталкивания между атомами, что было необходимо для того, чтобы кристаллическая решетка была стабильным равновесным состоянием системы идентичных атомов.
 
  
Пожалуй, наиболее важной датой в истории физики твердого тела является 8 июня 1912 г. В этот день в Баварской Академии наук в Мюнхене слушался доклад «[[Интерференция]] [[Рентгеновское излучение|рентгеновских лучей]]». В первой части доклада [[Лауэ, Макс фон|Лауэ]] выступил с изложением элементарной теории [[дифракция|дифракции]] рентгеновских лучей на периодическом атомном ряду. Во второй части доклада Фридрих и Книппинг сообщили о первых экспериментальных наблюдениях дифракции рентгеновских лучей в кристаллах. Этой работой было показано, что рентгеновские лучи являются волнами, так как они способны дифрагировать. Работа неопровержимо доказала также, что кристаллы состоят из периодических рядов атомов. С этого дня началась та физика твердого тела, какой мы знаем ее сегодня. В годы, непосредственно следующие за 1912 годом, в физике твердого тела было сделано много важных пионерских работ. Первыми кристаллическими структурами, определенными [[Брэгг,_Уильям_Лоренс|У. Л. Брэггом]] в 1913 г. с помощью рентгеновского дифракционного анализа, были структуры кристаллов [[KCl]], [[NaCl]], [[KBr]] и [[KI]].
+
Кристаллы многих минералов и драгоценных камней были известны и описаны ещё несколько тысячелетий назад. Одна из наиболее ранних зарисовок кристаллов содержится в китайской фармакопее одиннадцатого века нашей эры. Кристаллы кварца из императорской короны, сохранившиеся с 768 года нашей эры, находятся в Сёсоине, сокровищнице японских императоров в Нара. Кристаллом называли вначале только лёд, а затем и кварц, считавшийся окаменевшим льдом. В конце эпохи средневековья слово «кристалл» стало употребляться в более общем смысле.
 +
 
 +
Геометрически правильная внешняя форма кристаллов, образующихся в природных или лабораторных условиях, натолкнула ученых еще в семнадцатом веке на мысль, что кристаллы образуются посредством регулярного повторения в пространстве одного и того же структурного элемента. При росте кристалла в идеальных условиях форма его в течение всего роста остается неизменной, как если бы к растущему кристаллу непрерывно присоединялись бы элементарные кирпичики. Сейчас известно, что такими элементарными кирпичиками являются атомы или группы атомов. Кристаллы состоят из атомных рядов, периодически повторяющихся в пространстве и образующих кристаллическую решетку. В восемнадцатом веке минералогами было сделано важное открытие. Оказалось, что индексы, определяющие положение в пространстве любой грани кристалла, суть целые числа. Гаюи показал, что это можно объяснить расположением идентичных частичек в ряды, периодически повторяющиеся в пространстве. В 1824 г. Зибер из Фрайбурга предположил, что элементарные составляющие кристаллов («кирпичики», атомы)являются маленькими сферами. Он предложил эмпирический закон межатомной силы с учетом как сил притяжения, так сил отталкивания между атомами, что было необходимо для того, чтобы кристаллическая решетка была стабильным равновесным состоянием системы идентичных атомов.
 +
 
 +
Пожалуй, наиболее важной датой в истории физики твердого тела является 8 июня 1912 г. В этот день в Баварской Академии наук в Мюнхене слушался доклад «Интерференция рентгеновских лучей». В первой части доклада Лауэ выступил с изложением элементарной теории дифракции рентгеновских лучей на периодическом атомном ряду. Во второй части доклада Фридрих и Книппинг сообщили о первых экспериментальных наблюдениях дифракции рентгеновских лучей в кристаллах. Этой работой было показано, что рентгеновские лучи являются волнами, так как они способны дифрагировать. Работа неопровержимо доказала также, что кристаллы состоят из периодических рядов атомов. С этого дня началась та физика твердого тела, какой мы знаем ее сегодня. В годы, непосредственно следующие за 1912 годом, в физике твердого тела было сделано много важных пионерских работ. Первыми кристаллическими структурами, определенными У. Л. Брэггом в 1913 г. с помощью рентгеновского дифракционного анализа, были структуры кристаллов KCl, NaCl, KBr и KI.
  
 
После открытия дифракции рентгеновских лучей и публикации серии простых и весьма успешных работ с расчетами и предсказаниями свойств кристаллических веществ началось фундаментальное изучение атомной структуры кристаллов.
 
После открытия дифракции рентгеновских лучей и публикации серии простых и весьма успешных работ с расчетами и предсказаниями свойств кристаллических веществ началось фундаментальное изучение атомной структуры кристаллов.
  
В 30-e годы XX века работами [[Гейзенберг, Вернер|В. Гейзенберга]], [[Паули, Вольфганг|Паули]], [[Борн, Макс|М. Бopна]] были созданы основы квантово-механической теории твердого тела, что позволило объяснить и прогнозировать интересные физические эффекты в твердых телах. Ускоряли формирование физики твердого тела потребности нарождающейся твердотельной электроники в новых сверхчистых материалах. Здесь можно указать важнейшее событие -  открытие в 1948 г. [[Шокли, Уильям Брэдфорд|У.Шокли]], [[Браттейн, Уолтер Хаузер|У.Браттейном]] и [[Бардин, Джон|Дж. Бардином]] усилительных свойств [[транзистор|транзистора]].
+
В 30-e годы XX века работами В. Гейзенберга, Паули, М. Бopна были созданы основы квантово-механической теории твердого тела, что позволило объяснить и прогнозировать интересные физические эффекты в твердых телах. Ускоряли формирование физики твердого тела потребности нарождающейся твердотельной электроники в новых сверхчистых материалах. Здесь можно указать важнейшее событие -  открытие в 1948 г. У.Шокли, У.Браттейном и Дж. Бардином усилительных свойств транзистора.
  
 
В настоящее время методы и теория твердого тела, развитые для описания свойств и структуры монокристаллов, широко применяются для получения и исследования новых материалов: композитов и наноструктур, квазикристаллов и аморфных твердых
 
В настоящее время методы и теория твердого тела, развитые для описания свойств и структуры монокристаллов, широко применяются для получения и исследования новых материалов: композитов и наноструктур, квазикристаллов и аморфных твердых
тел. Физика твердого тела служит основой для изучения явлений [[высокотемпературная сверхпроводимость|высокотемпературной сверхпроводимости]], [[гигантское магнетосопротивление|гигантского магнетосопротивления]] и многих других перспективных современых наукоемких технологий.
+
тел. Физика твердого тела служит основой для изучения явлений высокотемпературной сверхпроводимости, гигантского магнетосопротивления и многих других перспективных современых наукоемких технологий.
  
 
Физика твердого тела сводится, в сущности, к установлению связи между свойствами индивидуальных атомов и молекул и свойствами, обнаруживаемыми при объединении атомов или молекул в гигантские ассоциации в виде регулярно-упорядоченных систем — кристаллов. Эти свойства можно объяснить, опираясь на простые физические модели твердых тел. Реальные кристаллы и аморфные твердые тела значительно сложнее, но эффективность и полезность простых моделей едва ли можно переоценить. Предметом данной области науки являются, прежде всего, свойства веществ в твердом состоянии, их связь с микроскопическим строением и составом, эвристическое прогнозирование и поиск новых материалов и физических эффектов в них. Фактически физика твердого тела служит базой для физического материаловедения.
 
Физика твердого тела сводится, в сущности, к установлению связи между свойствами индивидуальных атомов и молекул и свойствами, обнаруживаемыми при объединении атомов или молекул в гигантские ассоциации в виде регулярно-упорядоченных систем — кристаллов. Эти свойства можно объяснить, опираясь на простые физические модели твердых тел. Реальные кристаллы и аморфные твердые тела значительно сложнее, но эффективность и полезность простых моделей едва ли можно переоценить. Предметом данной области науки являются, прежде всего, свойства веществ в твердом состоянии, их связь с микроскопическим строением и составом, эвристическое прогнозирование и поиск новых материалов и физических эффектов в них. Фактически физика твердого тела служит базой для физического материаловедения.
  
 
== Кристаллофизика ==
 
== Кристаллофизика ==
{{main|Кристаллофизика}}
 
  
 
Кристаллы — это твердые вещества, в которых атомы располагаются правильным образом относительно друг друга. Эту правильность их относительного взаимного расположения можно описать на основе понятий симметрии; элементы симметрии кристалла определяют симметрию его физических свойств.
 
Кристаллы — это твердые вещества, в которых атомы располагаются правильным образом относительно друг друга. Эту правильность их относительного взаимного расположения можно описать на основе понятий симметрии; элементы симметрии кристалла определяют симметрию его физических свойств.
Строка 31: Строка 30:
 
Идеальный кристалл твердого тела можно получить путем бесконечного повторения в пространстве определенной группы атомов или молекул данного вещества. В наиболее простом случае такая структурная единица состоит из одного атома. В более сложных веществах такая структурная единица содержит десятки и сотни, а в кристаллах белков — тысячи атомов или молекул.
 
Идеальный кристалл твердого тела можно получить путем бесконечного повторения в пространстве определенной группы атомов или молекул данного вещества. В наиболее простом случае такая структурная единица состоит из одного атома. В более сложных веществах такая структурная единица содержит десятки и сотни, а в кристаллах белков — тысячи атомов или молекул.
  
Кристаллическую структуру описывают с помощью периодически повторяющейся в пространстве элементарной ячейки, имеющей форму параллелепипеда, и базиса — набора координат атомов в пределах элементарной ячейки. Каждая из таких элементарных ячеек может быть отнесена к одной из [[сингония|сингоний]] (по форме элементарной ячейки) или [[Кристаллическая система|кристаллических систем]] (в зависимости от набора элементов симметрии кристалла). В зависимости от набора элементарных трансляций кристаллические решетки подразделяются на четырнадцать [[Решётка Браве|решёток Браве]].
+
Кристаллическую структуру описывают с помощью периодически повторяющейся в пространстве элементарной ячейки, имеющей форму параллелепипеда, и базиса — набора координат атомов в пределах элементарной ячейки. Каждая из таких элементарных ячеек может быть отнесена к одной из сингоний (по форме элементарной ячейки) или кристаллических систем (в зависимости от набора элементов симметрии кристалла). В зависимости от набора элементарных трансляций кристаллические решетки подразделяются на четырнадцать решёток Браве.
  
 
=== Обратная решётка ===
 
=== Обратная решётка ===
{{main|Обратная решётка}}
 
  
 
Пространственная решетка кристалла непригодна для анализа волновых процессов в кристалле.
 
Пространственная решетка кристалла непригодна для анализа волновых процессов в кристалле.
Для описания периодического распределения отражающей способности кристалла по отношению к рентгеновским лучам вводят понятие обратной решетки. Основные векторы обратной решетки в физике твердого тела вводятся соотношениями:
+
Для описания периодического распределения отражающей способности кристалла по отношению к рентгеновским лучам вводят понятие обратной решетки.
 
+
: <math>
+
 
+
\mathbf{b_{1}}=2 \pi \frac{\mathbf{a_{2}} \times \mathbf{a_{3}}}{\mathbf{a_{1}} \cdot (\mathbf{a_{2}} \times \mathbf{a_{3}})}
+
</math>
+
: <math>
+
\mathbf{b_{2}}=2 \pi \frac{\mathbf{a_{3}} \times \mathbf{a_{1}}}{\mathbf{a_{2}} \cdot (\mathbf{a_{3}} \times \mathbf{a_{1}})}
+
</math>
+
: <math>
+
\mathbf{b_{3}}=2 \pi \frac{\mathbf{a_{1}} \times \mathbf{a_{2}}}{\mathbf{a_{3}} \cdot (\mathbf{a_{1}} \times \mathbf{a_{2}})}
+
 
+
</math>
+
 
+
Данные векторы имеют размерность обратной длины.
+
В кристаллографии обычно опускают в этих соотношениях множитель <math> 2 \pi </math>; большинство же физиков множитель <math> 2 \pi </math> оставляют. Иногда этот вопрос становится предметом споров между кристаллографами и твердотельщиками<ref>''Киттель Ч.'' Введение в физику твердого тела. — М.: ООО "МедиаСтар", 2006. — С. 78.</ref>.
+
На самом деле здесь нет противоречия, это вопрос удобства, отсутствие множителя  <math> 2 \pi </math> может упростить некоторые математические вычисления.
+
 
+
Кристаллическая решетка - решетка в обычном, реальном пространстве. Обратная решетка - решетка в пространстве Фурье. Другими словами обратная решётка (обратное пространство, импульсное пространство) является [[Преобразование Фурье|Фурье-образом]] прямой [[кристаллическая решётка|кристаллической решётки]] (прямого пространства).
+
  
 +
Кристаллическая решетка - решетка в обычном, реальном пространстве. Обратная решетка - решетка в пространстве Фурье. Другими словами обратная решётка (обратное пространство, импульсное пространство) является Фурье-образом прямой кристаллической решётки (прямого пространства).
  
 
=== Дефекты кристалла ===
 
=== Дефекты кристалла ===
{{main|Дефекты кристалла}}
 
  
 
Все реальные твердые тела, как монокристаллические, так и поликристаллические, содержат так называемые структурные дефекты, типы, концентрация, поведение которых весьма разнообразны и зависят от природы, условий получения материалов и характера внешних воздействий. Большинство дефектов, созданных внешним воздействием, термодинамически неустойчиво, а состояние системы в этом случае является возбужденным (неравновесным). Таким внешним воздействием может быть температура, давление, облучение частицами  и квантами высоких энергий, введение примесей, фазовый наклеп при полиморфных и других превращениях, механическое воздействие и т.п. Переход в равновесное состояние (релаксация) может проходить разными путями и, как правило, реализуется посредством ряда метастабильных состояний<ref>''Горелик С.С., Дашевский М.Я.'' Материаловедение полупроводников и диэлектриков. — М.: МИСиС, 2003. — С. 250.</ref>.
 
Все реальные твердые тела, как монокристаллические, так и поликристаллические, содержат так называемые структурные дефекты, типы, концентрация, поведение которых весьма разнообразны и зависят от природы, условий получения материалов и характера внешних воздействий. Большинство дефектов, созданных внешним воздействием, термодинамически неустойчиво, а состояние системы в этом случае является возбужденным (неравновесным). Таким внешним воздействием может быть температура, давление, облучение частицами  и квантами высоких энергий, введение примесей, фазовый наклеп при полиморфных и других превращениях, механическое воздействие и т.п. Переход в равновесное состояние (релаксация) может проходить разными путями и, как правило, реализуется посредством ряда метастабильных состояний<ref>''Горелик С.С., Дашевский М.Я.'' Материаловедение полупроводников и диэлектриков. — М.: МИСиС, 2003. — С. 250.</ref>.
Строка 73: Строка 53:
 
В кристаллах элементарных веществ к точечным дефектам относят вакансии и межузельные атомы. В кристаллах соединений также возможные так называемые антиструктурные дефекты. В случае наличия в кристалле примесей, возникают также дефекты связанные с атомами примеси. Точечные дефекты, не связанные с наличием примесей называют собственными, связанные с наличием примесей - примесными. Для обозначения точечных дефектов чаще всего используют систему символов, состоящую из заглавной буквы, обозначающей тип дефекта, нижнего индекса, обозначающего положение дефекта, верхний индекс, обозначающий зарядовое состояние дефекта.
 
В кристаллах элементарных веществ к точечным дефектам относят вакансии и межузельные атомы. В кристаллах соединений также возможные так называемые антиструктурные дефекты. В случае наличия в кристалле примесей, возникают также дефекты связанные с атомами примеси. Точечные дефекты, не связанные с наличием примесей называют собственными, связанные с наличием примесей - примесными. Для обозначения точечных дефектов чаще всего используют систему символов, состоящую из заглавной буквы, обозначающей тип дефекта, нижнего индекса, обозначающего положение дефекта, верхний индекс, обозначающий зарядовое состояние дефекта.
  
*[[Вакансия (физика)|Вакансией]] (<math>\mathbf{V}</math>) называют свободный узел решетки, который в идеальной решетке занят атомом.
+
*[[Вакансия|Вакансией]] называют свободный узел решетки, который в идеальной решетке занят атомом.
*[[Межузельный атом]] (<math>\mathbf{A_{i}}</math>) - атом, расположенный в межатомной поре (но не в вакансии).
+
*[[Межузельный атом]] - атом, расположенный в межатомной поре (но не в вакансии).
*Антиструктурный дефект (<math>\mathbf{A_{B}}</math>) - атом одного компонента соединения, занимающий узел не в своей подрешетке (<math>\mathbf{A}</math>, а в чужой (в подрешетке компонента <math>\mathbf{B}</math>)
+
*Антиструктурный дефект - атом одного компонента соединения, занимающий узел не в своей подрешетке, а в чужой (в подрешетке компонента)
 
*Примесный атом замещения — замена атома одного типа, атомом другого типа в узле кристаллической решетки. В позициях замещения могут находиться атомы, которые по своим размерам и электронным свойствам относительно слабо отличаются от атомов основы.
 
*Примесный атом замещения — замена атома одного типа, атомом другого типа в узле кристаллической решетки. В позициях замещения могут находиться атомы, которые по своим размерам и электронным свойствам относительно слабо отличаются от атомов основы.
 
*Примесный атом внедрения — атом примеси располагается в междоузлии кристаллической решетки. В металлах примесями внедрения обычно являются водород, углерод, азот и кислород. В полупроводниках — это примеси, создающие глубокие энергетические уровни в запрещенной зоне, например, медь и золото в кремнии.
 
*Примесный атом внедрения — атом примеси располагается в междоузлии кристаллической решетки. В металлах примесями внедрения обычно являются водород, углерод, азот и кислород. В полупроводниках — это примеси, создающие глубокие энергетические уровни в запрещенной зоне, например, медь и золото в кремнии.
Точечные дефекты могут образовывать кластеры (например: пара Френкеля <math>\mathbf{V + A_{i}}</math>, дефект Шотки - атом, ушедший на поверхность или в дислокацию с образованием вакансии - <math>\mathbf{V + A_{s}}</math> и мн. др.), скопления (например, две расположенные рядом вакансии - бивакансия), переходить в заряженное состояние (ионизовываться), то есть играть роль доноров или акцепторов.
+
Точечные дефекты могут образовывать кластеры (например: пара Френкеля, дефект Шотки - атом, ушедший на поверхность или в дислокацию с образованием вакансии и мн. др.), скопления (например, две расположенные рядом вакансии - бивакансия), переходить в заряженное состояние (ионизовываться), то есть играть роль доноров или акцепторов.
  
 
К линейным дефектам относят дислокации и дисклинации.
 
К линейным дефектам относят дислокации и дисклинации.
*[[Дислокация (кристаллография)]] — граница области незавершенного сдвига в кристалле. Дислокации возникают в процессе роста кристалла; при его пластической деформации и во многих других случаях. Их распределение и поведение при внешних воздействиях определяют важнейшие механические свойства, в частности такие как прочность, пластичность и др.
+
*[[Дислокация]] (кристаллография)— граница области незавершенного сдвига в кристалле. Дислокации возникают в процессе роста кристалла; при его пластической деформации и во многих других случаях. Их распределение и поведение при внешних воздействиях определяют важнейшие механические свойства, в частности такие как прочность, пластичность и др.
 
*Дисклинация — граница области незавершенного поворота в кристалле.
 
*Дисклинация — граница области незавершенного поворота в кристалле.
  
Строка 94: Строка 74:
 
Все остальные точечные дефекты, а также все одно-, двух- и трехмерные дефекты относятся к термодинамически неравновесным, и кристалл принципиально может быть получен без них
 
Все остальные точечные дефекты, а также все одно-, двух- и трехмерные дефекты относятся к термодинамически неравновесным, и кристалл принципиально может быть получен без них
  
 +
== Фазовые переходы ==
 +
* Фазовые переходы первого рода
 +
* Фазовые переходы второго рода
 +
* Теоретические методы описания фазовых переходов
 +
** Метод ренормгруппы
 +
*** Блочный гамильтониан, преобразование Каданова
 +
*** Термодинамическая гипотеза подобия
 +
** Точно решаемые модели фазовых переходов
 +
** Численное моделирование фазовых переходов
  
 +
== См также ==
  
== [[Фазовые переходы]] ==
+
* [[Кристаллическая решётка]]
* [[Фазовые переходы первого рода]]
+
* [[Аморфные тела]]
* [[Фазовые переходы второго рода]]
+
* [[Теоретические методы описания фазовых переходов]]
+
** [[Метод ренормгруппы]]
+
*** [[Блочный гамильтониан]], [[преобразование Каданова]]
+
*** [[Термодинамическая гипотеза подобия]]
+
** [[Точно решаемые модели фазовых переходов]]
+
** [[Численное моделирование фазовых переходов]]
+
  
== Литература ==
 
* {{книга
 
| автор          = Н. Ашкрофт, Н. Мермин
 
| заглавие      = Физика твердого тела: В двух томах
 
| оригинал      =
 
| ссылка        = http://books.google.com/books?id=xIHWOQAACAAJ&dq=%D0%B0%D1%88%D0%BA%D1%80%D0%BE%D1%84%D1%82+%D0%BC%D0%B5%D1%80%D0%BC%D0%B8%D0%BD&hl=ru&cd=2
 
| ответственный  = М.И Каганов
 
| издание        =
 
| место          = М.
 
| издательство  = Мир
 
| год            = 1979
 
| страниц        = 399
 
| серия          =
 
| isbn          =
 
| тираж          =
 
}}
 
  
* {{книга
+
[[Категория: Проект]]
| автор          = Ч. Киттель
+
[[Категория: Дефекты кристалла]]
| заглавие      = Введение в физику твердого тела
+
| оригинал      =
+
| ссылка        =
+
| ответственный  =
+
| издание        =
+
| место          = М.
+
| издательство  = Наука
+
| год            = 1978
+
| страниц        =
+
| серия          =
+
| isbn          =
+
| тираж          =
+
}}
+
  
* {{книга
+
== Используемые источники ==
| автор          = В.И. Зиненко
+
  <references />
| заглавие      = Основы физики твердого тела
+
| оригинал      =  
+
| ссылка        =  
+
| ответственный =
+
| издание        =
+
| место          = М.
+
| издательство  = Издательство Физико-математической литературы
+
| год            = 2001
+
| страниц        = 336
+
| серия          =
+
| isbn          = 5-94052-040-5
+
| тираж          =
+
}}
+
 
+
* {{книга
+
| автор          = Я.С. Уманский, Ю.А. Скаков, А.Н. Иванов, Л.Н. Расторгуев
+
| заглавие      = Кристаллография, рентгенография и электронная микроскопия
+
| оригинал      =
+
| ссылка        =
+
| ответственный  =
+
| издание        =
+
| место          = М.
+
| издательство  = Металлургия
+
| год            = 1982
+
| страниц        = 632
+
| серия          =
+
| isbn          =
+
| тираж          = 13000
+
}}
+
* {{книга
+
| автор          = М.П. Шаскольская
+
| заглавие      = Кристаллография: Учебное пособие для втузов
+
| оригинал      =
+
| ссылка        =
+
| ответственный  =
+
| издание        =
+
| место          = М.
+
| издательство  = Высшая школа
+
| год            = 1984
+
| страниц        = 376
+
| серия          =
+
| isbn          =
+
| тираж          = 16000
+
}}
+
 
+
* {{книга
+
| автор          = С.С.Горелик, М.Я.Дашевский
+
| заглавие      = Материаловедение полупроводников и диэлектриков: Учебник для вузов.
+
| оригинал      =
+
| ссылка        =
+
| ответственный  =
+
| издание        =
+
| место          = М.
+
| издательство  = МИСиС
+
| год            = 2003
+
| страниц        = 480
+
| серия          =
+
| isbn          =
+
| тираж          =
+
}}
+
 
+
== См также ==
+
 
+
* [[Кристаллическая решётка]]
+
* [[Типы кристаллических решёток]]
+
* [[Обратная решётка]]
+
* [[Ячейка Вигнера - Зейтца]]
+
* [[Зона Бриллюэна]]
+
* [[Типы связей в кристаллах]]
+
* [[зонная теория]]
+
* [[теорема Блоха]]
+
* [[фонон]]ы
+
* [[квазикристалл]]ы
+
* [[Аморфные тела]]
+

Текущая версия на 12:36, 23 марта 2012

Фи́зика твёрдого те́ла — раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомарного строения. Интенсивно развивалась в XX веке после открытия квантовой механики. Развитие стимулировалась широким спектром важных задач прикладного характера, в частности, развитием полупроводниковой техники.

В настоящее время физика твёрдого тела разбилась на большое количество более мелких направлений.

Содержание

История

Кристаллы многих минералов и драгоценных камней были известны и описаны ещё несколько тысячелетий назад. Одна из наиболее ранних зарисовок кристаллов содержится в китайской фармакопее одиннадцатого века нашей эры. Кристаллы кварца из императорской короны, сохранившиеся с 768 года нашей эры, находятся в Сёсоине, сокровищнице японских императоров в Нара. Кристаллом называли вначале только лёд, а затем и кварц, считавшийся окаменевшим льдом. В конце эпохи средневековья слово «кристалл» стало употребляться в более общем смысле.

Геометрически правильная внешняя форма кристаллов, образующихся в природных или лабораторных условиях, натолкнула ученых еще в семнадцатом веке на мысль, что кристаллы образуются посредством регулярного повторения в пространстве одного и того же структурного элемента. При росте кристалла в идеальных условиях форма его в течение всего роста остается неизменной, как если бы к растущему кристаллу непрерывно присоединялись бы элементарные кирпичики. Сейчас известно, что такими элементарными кирпичиками являются атомы или группы атомов. Кристаллы состоят из атомных рядов, периодически повторяющихся в пространстве и образующих кристаллическую решетку. В восемнадцатом веке минералогами было сделано важное открытие. Оказалось, что индексы, определяющие положение в пространстве любой грани кристалла, суть целые числа. Гаюи показал, что это можно объяснить расположением идентичных частичек в ряды, периодически повторяющиеся в пространстве. В 1824 г. Зибер из Фрайбурга предположил, что элементарные составляющие кристаллов («кирпичики», атомы)являются маленькими сферами. Он предложил эмпирический закон межатомной силы с учетом как сил притяжения, так сил отталкивания между атомами, что было необходимо для того, чтобы кристаллическая решетка была стабильным равновесным состоянием системы идентичных атомов.

Пожалуй, наиболее важной датой в истории физики твердого тела является 8 июня 1912 г. В этот день в Баварской Академии наук в Мюнхене слушался доклад «Интерференция рентгеновских лучей». В первой части доклада Лауэ выступил с изложением элементарной теории дифракции рентгеновских лучей на периодическом атомном ряду. Во второй части доклада Фридрих и Книппинг сообщили о первых экспериментальных наблюдениях дифракции рентгеновских лучей в кристаллах. Этой работой было показано, что рентгеновские лучи являются волнами, так как они способны дифрагировать. Работа неопровержимо доказала также, что кристаллы состоят из периодических рядов атомов. С этого дня началась та физика твердого тела, какой мы знаем ее сегодня. В годы, непосредственно следующие за 1912 годом, в физике твердого тела было сделано много важных пионерских работ. Первыми кристаллическими структурами, определенными У. Л. Брэггом в 1913 г. с помощью рентгеновского дифракционного анализа, были структуры кристаллов KCl, NaCl, KBr и KI.

После открытия дифракции рентгеновских лучей и публикации серии простых и весьма успешных работ с расчетами и предсказаниями свойств кристаллических веществ началось фундаментальное изучение атомной структуры кристаллов.

В 30-e годы XX века работами В. Гейзенберга, Паули, М. Бopна были созданы основы квантово-механической теории твердого тела, что позволило объяснить и прогнозировать интересные физические эффекты в твердых телах. Ускоряли формирование физики твердого тела потребности нарождающейся твердотельной электроники в новых сверхчистых материалах. Здесь можно указать важнейшее событие - открытие в 1948 г. У.Шокли, У.Браттейном и Дж. Бардином усилительных свойств транзистора.

В настоящее время методы и теория твердого тела, развитые для описания свойств и структуры монокристаллов, широко применяются для получения и исследования новых материалов: композитов и наноструктур, квазикристаллов и аморфных твердых тел. Физика твердого тела служит основой для изучения явлений высокотемпературной сверхпроводимости, гигантского магнетосопротивления и многих других перспективных современых наукоемких технологий.

Физика твердого тела сводится, в сущности, к установлению связи между свойствами индивидуальных атомов и молекул и свойствами, обнаруживаемыми при объединении атомов или молекул в гигантские ассоциации в виде регулярно-упорядоченных систем — кристаллов. Эти свойства можно объяснить, опираясь на простые физические модели твердых тел. Реальные кристаллы и аморфные твердые тела значительно сложнее, но эффективность и полезность простых моделей едва ли можно переоценить. Предметом данной области науки являются, прежде всего, свойства веществ в твердом состоянии, их связь с микроскопическим строением и составом, эвристическое прогнозирование и поиск новых материалов и физических эффектов в них. Фактически физика твердого тела служит базой для физического материаловедения.

Кристаллофизика

Кристаллы — это твердые вещества, в которых атомы располагаются правильным образом относительно друг друга. Эту правильность их относительного взаимного расположения можно описать на основе понятий симметрии; элементы симметрии кристалла определяют симметрию его физических свойств. Обычно считается, что кристаллы имеют правильную форму с плоскими гранями и прямыми ребрами. Симметрия и правильность внешней формы кристаллических многогранников отличительная, но не обязательная их особенность. В заводских и лабораторных условиях часто выращивают кристаллы не многогранные, что, однако, не изменяет их свойств.

Из всех состояний вещества твёрдое тело имеет наименьшую свободную энергию, и поэтому является равновесным при умеренных и низких температурах. Частицы твердого тела объединяются друг с другом с помощью химических связей. Уравнение для энергии связи любого типа может быть представлено в виде двухчленного выражения, содержащего члены, отвечающие за энергию притяжения и энергию отталкивания. Суммарная энергия связи для кристалла имеет вид кривой, имеющей единственный минимум. Поэтому в каждом направлении частицы твердого тела располагаются в единственно возможных равновесных положениях, соответствующих минимуму энергии в данном направлении. Возникает строгая трехмерная периодичность положения частиц, образующих твердое тело. Эта периодичность объясняет огранку кристаллов и анизотропию их свойств.

Идеальный кристалл твердого тела можно получить путем бесконечного повторения в пространстве определенной группы атомов или молекул данного вещества. В наиболее простом случае такая структурная единица состоит из одного атома. В более сложных веществах такая структурная единица содержит десятки и сотни, а в кристаллах белков — тысячи атомов или молекул.

Кристаллическую структуру описывают с помощью периодически повторяющейся в пространстве элементарной ячейки, имеющей форму параллелепипеда, и базиса — набора координат атомов в пределах элементарной ячейки. Каждая из таких элементарных ячеек может быть отнесена к одной из сингоний (по форме элементарной ячейки) или кристаллических систем (в зависимости от набора элементов симметрии кристалла). В зависимости от набора элементарных трансляций кристаллические решетки подразделяются на четырнадцать решёток Браве.

Обратная решётка

Пространственная решетка кристалла непригодна для анализа волновых процессов в кристалле. Для описания периодического распределения отражающей способности кристалла по отношению к рентгеновским лучам вводят понятие обратной решетки.

Кристаллическая решетка - решетка в обычном, реальном пространстве. Обратная решетка - решетка в пространстве Фурье. Другими словами обратная решётка (обратное пространство, импульсное пространство) является Фурье-образом прямой кристаллической решётки (прямого пространства).

Дефекты кристалла

Все реальные твердые тела, как монокристаллические, так и поликристаллические, содержат так называемые структурные дефекты, типы, концентрация, поведение которых весьма разнообразны и зависят от природы, условий получения материалов и характера внешних воздействий. Большинство дефектов, созданных внешним воздействием, термодинамически неустойчиво, а состояние системы в этом случае является возбужденным (неравновесным). Таким внешним воздействием может быть температура, давление, облучение частицами и квантами высоких энергий, введение примесей, фазовый наклеп при полиморфных и других превращениях, механическое воздействие и т.п. Переход в равновесное состояние (релаксация) может проходить разными путями и, как правило, реализуется посредством ряда метастабильных состояний[1].

Дефекты одних типов, взаимодействуя (рекомбинируя) с дефектами того же или иного типов, могут аннигилировать или образовывать новые ассоциации дефектов. Эти процессы сопровождаются уменьшением энергии системы.

По числу направлений N, в которых простирается нарушение периодического расположения атомов в кристаллической решетке, вызванное данным дефектом, выделяют дефекты:

В кристаллах элементарных веществ к точечным дефектам относят вакансии и межузельные атомы. В кристаллах соединений также возможные так называемые антиструктурные дефекты. В случае наличия в кристалле примесей, возникают также дефекты связанные с атомами примеси. Точечные дефекты, не связанные с наличием примесей называют собственными, связанные с наличием примесей - примесными. Для обозначения точечных дефектов чаще всего используют систему символов, состоящую из заглавной буквы, обозначающей тип дефекта, нижнего индекса, обозначающего положение дефекта, верхний индекс, обозначающий зарядовое состояние дефекта.

Точечные дефекты могут образовывать кластеры (например: пара Френкеля, дефект Шотки - атом, ушедший на поверхность или в дислокацию с образованием вакансии и мн. др.), скопления (например, две расположенные рядом вакансии - бивакансия), переходить в заряженное состояние (ионизовываться), то есть играть роль доноров или акцепторов.

К линейным дефектам относят дислокации и дисклинации.

К двухмерным несовершенствам относят внутрифазные и межфазные границы.

К объемным (трехмерным) дефектам относят скопления вакансий, образующие поры и каналы; частицы, оседающие на различных дефектах (декорирующие), например пузырьки газов, пузырьки маточного раствора; скопления примесей в виде секторов (песочных часов) и зон роста. Как правило, это поры или включения примесных фаз. Представляют собой конгломерат из многих дефектов. Происхождение — нарушение режимов роста кристалла, распад пересыщенного твердого раствора, загрязнение образцов. В некоторых случаях (например, при дисперсионном твердении) объемные дефекты специально вводят в материал, для модификации его физических свойств.

Дефекты делят на термодинамически равновесные и термодинамически неравновесные.

К термодинамически равновесным относят точечные дефекты, при наличии которых энергия системы меньше, чем в их отсутствие. Это уменьшение энергии осуществляется за счет увеличения энтропии. К таким дефектам относятся только те, энергия которых может быть обеспечена флуктуациями тепловой энергии системы.

Все остальные точечные дефекты, а также все одно-, двух- и трехмерные дефекты относятся к термодинамически неравновесным, и кристалл принципиально может быть получен без них

Фазовые переходы

См также

Используемые источники

  1. Горелик С.С., Дашевский М.Я. Материаловедение полупроводников и диэлектриков. — М.: МИСиС, 2003. — С. 250.
Личные инструменты
Пространства имён
Варианты
Действия
Навигация
Группы
Ссылки
Инструменты